| mplementing Multidisciplinary and

Multi-zonal Applications Using M PI
Samuel A. Finebet

Report NAS-95-003 January 1995

Computer Sciences Corporation
Numerical Aerodynamic Simulation
NASA Ames Research Centdd/S 258-6
Moffett Field, CA 94035-1000
(415)604-4319
e-mail: f ineberg@nas.nasa.gov
Abstract

Multidisciplinary andmulti-zonalapplications are an important class of applica-
tions in the area of Computational Aerosciences. In these codes, two or more dis-
tinct parallel programs or copies of a single program are utilized to model a single
problem. D support such applications, it is common to use a programming model
where a program is divided into several single program multiple data stream
(SPMD) applications, each of which solves the equations for a single physical dis-
cipline or grid zone. These SPMD applications are then bound together to form a
singlemultidisciplinary or multi-zonalprogram in which the constituent parts
communicate via point-to-point message passing routines. Unfortyrsiteple
message passing models, like IrgéX library, only allow point-to-point and glo-

bal communication within a single systemidefl partition. This makes imple-
mentation of these applications quitefidiilt, if not impossible. In this report it is
shown that the new Message Passing Interface (MPI) standard is a viable portable
library for implementing the message passing portion of multidisciplinary applica-
tions. Furtherwith the extension of a portable loadedly portable multidisci-
plinary application programs can be developed. Fintdl/ performance of MPI is
compared to that of some native message passing libraries. This comparison shows
that MPI can be implemented to deliver performance commensurate with native
message passing libraries.

1. This work was supported through NASA contract NAS 2-12961.

1

1.0 Introduction and Background

Multidisciplinary andmulti-zonalapplications are an important class of programs

in the area of Computational Aerosciences. In these codes, two or more distinct
parallel applications or copies of a single application are utilized to model a single
problem [BaW93]. ® support such programs, it is common to use a programming
model where an application is divided into several single program multiple data
stream (SPMD) applications, each of which solves the equations for a single phys-
ical discipline or a particular portion of a data set (i.e., a grid zone). These SPMD
applications are then bound together to form a simgl#idisciplinary or multi--
zonalprogram in which the constituent parts communicate via point-to-point mes-
sage passing routines. Unfortunateliynple message passing models, like Istel’
message passing library (NX) or Thinking Machines’ message passing library
(CMMD), only allow point-to-point and global communication within a single
system-defined partition. This makes implementation of multidisciplinary applica-
tions quite dificult, if not impossible.

Several non-portable libraries have been implemented to solve this problem. These
include the intercube library for the iPSC/860 [Bar91] and the Map library for the
Paragon [Fin93c]. Neither of these solutions allow a single source code to be used
across multiple systemso Hevelop portable multidisciplinary programs, there are
several requirements. First, one must have a portable message passing library that
is capable of supporting multiple procé@oups, collective communication
within process groups, and irigroup communication. Second, one must have a
portable loader that is capable of starting multiple, possibigrdiit, programs as

a single multidisciplinary application. Finallhis loader must have some way of
telling the programs it has loaded about where tHereifit applications reside.
Otherwise it would be impossible to communicate between applications.

There are, of course, quite a few portable message passing libraries. Of these, sev-
eral provide the support necessary for multidisciplinary process groups and collec-
tive communication. Wo of these are PVM [GeS91, GeB93] and MPI [Mes94].
These libraries are available for most MPP systems as well as for networks of
workstations. MPI was chosen as the preferable message passing library for sev-
eral reasons. First, while MP1 is still neivis a standard. Therefore, it is not
expected to undgo the constant changes that other libraries, most notably PVM,
suffer from. In addition, from a performance perspective, MPI should perform bet-
ter on MPP systems than PVM. This is primarily due MRkatically dehed

group structures, and its ability to be implemented withouthknf. While these
factors should enable MPI to perform better than PVM, MPI will still be worse
than native libraries until it is directly supported by vendocsdate, only IBM
Research has provided a vendor optimized version of MPI. This version is still
experimental, but it shows promise because its performance is as good or better
than IBM’s proprietary message passing libr&ypported vendor implementa-

1. In this paperthe term “process” will be used instead of “processor” or “node.” This refers to the fact that
more than one MPI “process” may be present on a single processor of a parallel system.

tions of MPI should begin to appear in the coming year and hopefully will begin to
replace vendor speiflibraries. For more information on performance issues see
Section 5.

Portable loaders, howeveare far more diicult to find. PVM does provide pro-
gram loading facilities, and does support multiple executables within a single job.
However it does not provide a portable means for determining where applications
have been loaded. MPI does not provide any loading facilities, therefore, all load-
ing must be done using means external to MPI. In this papsortable loader
interface, MPIRUN, is described. MPIRUN may be implemented on virtually any
MPP system or workstation network, and it is simpler than the loader provided by
PVM. This simplicity makes it far easier to integrate MPIRUN with existing
resource allocation and scheduling software. FineIRIRUN not only loads user
programs, but also provides run-time loading information needed to initiate inter
application communication.

2.0 MPI Basics

MPI has several features that make it ideal for multidisciplinary program develop-
ment. In this section some MPI basics will be presented, followed with the
advanced features necessary for multidisciplinary and multi-zonal applications.
This paper assumes that the reader has knowledge of some other message passing
library, e.g., NX, CMMD, etc., and many of the details are left to the reBden
complete specification of MPI see the standard [Mes94].

2.1 Basic send and receive operations

MPI provides a vast array of communication operations. Unfortunaiale the

only guide to writing MPI programs to date is the standard [Mes94], one can easily
become daunted by the amount of functionality provided by MPI. Howéorer

most programs one can ignore most of these features. For simple point to point
message passing most users can and should stick with theviisisiSend and
MPI_Recv synchronous send/receive operations. These basic operations are anal-
ogous to thesend operation in NX or th€MMD_send_block in CMMD.

MPI is also capable of performing asynchronous message passing, using the
MPI_Isend and MPI_Irecv operation§. TheMPI_Send operation is spec-

ified as follows:

int MP1_Send(void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

for C, or for FOR RAN:
MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

2. MPI also provides several other “modes” for communication, i.e., synchronous igfeated. In some
cases these modes may provide easier conversion to MPI. Hptheveasic send and receive operations
should provide the highest level of portability and performance.

<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Several of these parameters should appear familiar to readers experienced with NX
or CMMD. buf specifes what data to send. In MPI, berfs are “typed,” i.e., all
messages contain data of some spectyfpe. The type could bNTEGER,

REAL, DOUBLE PRECISION, etc. for FORRAN; orint, f loat, dou-

ble , etc. for C. In general, MPI supports any basic data type that the programming
language (e.g., C or FORAN) supports. In addition, MPI supports “untyped”
data by passing it as a series of bytes (usingytRe BYTE data typefi When
sending MPI messages, theunt is the number of elements of data type
“datatype " in buf . Therefore, ifouf is an array of integerspunt would be

the number of integers touf anddatatype would beMPI_INT (for C) or
MPI_INTEGER (for FORTRAN). If buf is a single double precision numper
count would be 1 andatatype would beMPI_DOUBLEor MPI_DOUBLE_-
PRECISION. This differs from many other message passing systems because
count is notthe number of bytes ibhuf . This was implemented in order to
ensure portability between systems that haviergift size data types. In addition,

it enables MPI to be implemented for heterogenous environments, i.e., data can be
converted between dérent format<: tag is used as a selector between messages
sent to the same proce%dest specifes the “rank” of the process to which the
message is to be sent. A rank is roughly the same thing as a process or processor
number in most systems. Theféifence is that all ranks are relative to some
grouping of the systerm’processes speeifl by a “communicator’domn). Nor-

mally, most programs can use the pre-defined communiglorCOMM_WORLD

This communicator includes all processes in a' aggpgram, so a rank relative to

it will be the same as a processor number on most systems. More information on
communicators will be presented in Section 2.3. Tinalfparameter of
MPI_Send, IERROR is used for returning an error value to HB¥AN programs

(in C this value is returned directly by the functdPl_Send). This return value

can be used to determine if the send was successful or not.

MPI_Recv is specified as follows:

int MP1_Recv(void* buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)
<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM,
STATUS(MPI_STATUS_SIZE), IERROR

3. Another advanced feature of MPI not discussed in this paper is derived datatypes. Thesefattoto buf
contain elements that arefdifent basic data types (like C structures). In addition, derived types can be used to
specify strided vectors and other irregular data structures.

4. Support for heterogeneous environments (e.g., data conversion) is implementation dependent, not part of
the standard. Howeviean MPI program written for a homogeneous environment would not have to be re-writ-
ten to run with a heterogeneous MPI library

5. Note that the MPI standard only guarantees that the tag field is 16 bits (0 to 65535). While most implemen-
tations support lgier tags, it is advisable to keep tags within this limit.

4

Here,buf , count , anddatatype specify the destination address, size, and the
data type of the message being receigedrce is used to restrict the receive to
messages sent by a process with a gpeaihk. Furthertag restricts the receive

to messages sent with the same tag value. These values may be “wildcarded” by
setting them taMPI_ANY_SOURCIEr MPI_ANY_TAGif one wants to receive
messages regardless of their source and/octagmis the communicator men-
tioned before. The sending and receiving communicators must match, i.e., commu-
nicators may not be wildcarded like the source and igldd. status is a
variable in which message “status” informations is stored. This variable can then
be used to determine information about the message received (i.e., size, sender
tag). Finally MPI_Recv also returns an error value in the same way as described
for MP1_Send.

Consider a simple example where the following program is run by two processes:
program pingpong

include ‘mpif.h’
integer ierr, rank, status(MPI_STATUS_SIZE)
double precision buf(10)

c Initialize MPI Environment
call MPI_Init(ierr)

¢ Determine your rank in MPI_COMM_WORLD
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)

if (rank.eq.0) then
¢ Process 0 sends 10 double precision numbers to 1
call MPI_Send(buf, 10, MPI_DOUBLE_PRECISION,
$ 1, 0, MPI_COMM_WORLD, ierr)
¢ Process 0 receives 10 double precision numbers from 1
call MPI_Recv(buf, 10, MPI_DOUBLE_PRECISION,
$ 1,1, MPI_COMM_WORLD, status, ierr)
else
¢ Process 1 receives 10 double precision numbers from 0
call MPI_Recv(buf, 10, MPI_DOUBLE_PRECISION,
$ 0, 0, MPI_COMM_WORLD, status, ierr)
¢ Process 1 sends 10 double precision numbers to 0
call MPI_Send(buf, 10, MPI_DOUBLE_PRECISION,
$ 0, 1, MPI_COMM_WORLD, ierr)
endif

call MPI_Finalize(ierr)
end

In this example, both processes determine what their “ranks” are relative to the
communicatoMPl_COMM_WORLDhen, process 0 sends a message to process
1, and process 1 sends the data back to 0. Note that in a given commualicator

processes will be numbered from 0 to N-1 (where N is the total number of pro-

cesses). Tharkt message uses a tag value of 0, and the second one uses tag 1.
Each message consists of 10 double precision floating point numbers.

2.2 Collective communication

MPI provides a wide range of collective communication operations including
reductions, scans, broadcasts and barriers.dvt®llective operations are block-

ing, i.e., all processes must reach the collective operation before any may proceed
past it. As an example, consider the global reduction operation:

int MPI_Reduce(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MP1_Op op, int root, MPI_Comm comm)

MPI_REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM,
IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, ROOT, COMM, [ERROR

Thus, arMPI_Reduce performs some type of reduction operation as specified by
op (i.e., global sum, global max, global min, etc.) on the variabtendbuf
across all processes belonging to the provided communfatuat the result is
returned to the root processrecvbuf . TheMPI_Allreduce = command does
the same thing, but the result is returned tad¢egbuf variable in all processes
that belong to the communicatdiherefore, amMPI_Allreduce can be thought

of as anMPI_Reduce followed by a broadcasiMPI_Bcast).7 This second
option is similar to that provided by the “global” functions in Ir#&X library.

2.3 Groups, Contexts, and Communicators

One of the most powerful, and confusing, aspects of MPI is its use of groups, con-
texts, and communicators to providdexible and “safe” programming environ-

ment. All communication performed in MPI involvesammunicatorin its

simplest form, a communicator can be thought ofgitx;)ap.8 A group is simply a
mapping from a rank (an integer between 0 and the number of processes - 1) to a
physical process or processbherefore, for each communicator there will be a set

of processes, and each process in this set will have a unique rank. Then messages

6. MPI collective communication operations involve only the processes defined by the communicator passed
in to the collective communication routine. If this communicatéf$_COMM_WORLihe operation would

involve all available processes. Howe\as will be detailed in the next section, communicators may only con-

tain a subset of the available processes. This ability to perform collective communication on process subsets is
very important for supporting multidisciplinary and multi-zonal applications.

7. A good implementation &fIPl_Allreduce might use a diérent algorithm for the reduction and skip
the broadcast.

8. Communicators actually consist of both a group and a “context.” A context is a mechanism that can be used
for protecting communication operations from interfering with each.dthiersimilar to a tag, but is not wild-
cardable. Therefore, a message sent using one context can not be received dshegtacdifitext. This can

be very useful for protecting library communication from other messages, but most users need not worry about
this feature.

can be sent between processes using this rank. Therefore, as in Figure 1 the actual

A Process B
MPI_COMM_WORLD 0 1
MPI_COMM_SELF 0 0
comm_reverse 1 0

Figure 1: Rank example.

processes (A and B) can be represented fierdifit ways. For example, using
MPI_COMM_WORLf{Dey have ranks 0 and 1 respectivélyrther MPI defnes
another communicatoMPI_COMM_SELRhat only contains the calling process.
Therefore, every node will have rank OMPI_COMM_SELPMNe could also
define another communicateomm_reverse , that contains both process A and
B from Figure 1, but reverses their ranks relativelRi_COMM_WORLThus, A
has rank 0 iMPI_COMM_WORLand rank 1 iromm_reverse . B has rank 1
in MPI_COMM_WORIand rank O icomm_reverse . Ranks are used as a short-
hand method of specifying a process, and are only unique within a communicator
Thus, sending a message from process 0 to processIRIICOMM_WORLD
functionally equivalent to sending a message from process 1 to procassn®-in
m_reverse .

Some simple operations on communicatorsMiR? _Comm_size andMPI_-
Comm_rank. MPI_Comm_size returns the number of processesrzd by a
communicatarMPI_Comm_rank specifies the rank of the calling process relative
to the communicatoihese commands are similamilomnodes andmynode in

NX.

Communicators are not only used for renumbering nodes. They can also be used to
break up the available processes in to disparate groutisn\&ach subgroup pro-
cesses still have a rank (from zero to the subgroup size minus one). Note that mes-
sages sent using a particular communicator can not be received by any other
communicatarTherefore, messages within a subgroup can not interfere with
another subgroup. In addition, since collective communication operations occur
within a communicatgrseparate collective operations may occur within each of
these groups. Thus, it is possible to synchronize the processes in one communica-
tor group without involving any processes outside of the communicator in that
synchronization operation.

The easiest way to create subgroups is withMRé Comm_split command.
This command is collective, so all processes belonging to the original communica-
tor being spilt MPI_COMM_WORIibthis example) must call it as follows, in C,

MPI_Comm_split(MPI_COMM_WORLD, color, 0, &nhewcomm);

or, in FORTRAN,
call MPI_Comm_split(MPI_COMM_WORLD, color, 0, newcomm, ierr)

This routine would then create a new communicatewgomn) in each process.

The communicator generated in a particular process will include the group of pro-
cesses for which the “color” (the value of the variadal®r) is the same. There-

fore, there may be 1, 2, or more unique groups of processes created by an
MPI_Comm_split command, as many as there are unique “colors.” MPI also
allows processes to specify what rank they wish to be in the new communicator by
giving a “key” (equal to O in the example)ie§ are broken by the rank in the
source communicator (i.eVJPI_COMM_WORLDthe example), so if the key
value is 0, the processes will be numbered from 0 to the appropriate group size
with ranking in the same order as in the source communicktarexample, con-

— OOOOOF

MPI_COMM_WORLDO 1

color 0 1 3 3 O 3
0 1
newcomm 0

Figure2: MPI_Comm_split example.

sider Figure 2. Here, each processor lgdil_Comm_split with the color value
shown. This causes 3 fifent communicators to be created, one for each.color
The communicator to which the calling process belongs is returmesvcomm

Within each group, processes are still numbered 0 to groupsize - 1. Note that there
is no rank dehed for process B in the communicatorided for processes A and

E, thus, there is no way to send a message from process A to Bhasiogmm
However it is still possible to send such a message ugdinp COMM_WORLD

Now that it is possible to create separate communicators, it is still desirable to have
a mechanism for communicating between these communicator groups. One
method is simply to communicate throulgtil_COMM_WORLW®hich all pro-
cesses will be members of. In addition, MPI provides a mechanism for sending
messages between disparate communicatorsnt&gommunicatorsFor exam-

ple, consider Figure 3. \tan send a message from process A to process B in two

MPI_COMM_WORLDO
comml | 0 1 |

comm?2 | 0 |

comm3 | 0 1 2 |

Figure 3: Intercommunicator example.

different ways. First, we could send a message from 0 tMPinCOMM_WORLD
Another option, howevemwould be to create an intercommunicator between
commZlandcomm?2 Intercommunicators are used the same way as communicators
in MP1_Send andMPI_Recv. Howeverthedest field in anMPI_Send will be

relative to the remote group (if process A sends a message to a process with rank O
using an intercommunicator created betweemmlandcommz2 the message
would be sent to process B). Thaurce field in anMPl_Recv using an inter-
communicator also refers to the remote group (if process B receives a message
from a process with rank 0 using an intercommunicator betwesimland
commz2 the source would be process A). Therefore, to send a message from pro-
cess A to process B using an intercommunicator beta@@mlandcomm?2 the
message would be sent from process 0 to process 0.

To create an intercommunicattrowevey some information must be known by

both groups of processes. First, the local processes must know the rank of one pro-
cess from the remote communicateor this rank to make sense, it must be rela-
tive to some communicator that the local processes creating the intercommunicator
also belong to. The processes, one in each of the communicator groups being
joined, that have a rank known by everyone in both of the groups, are referred to as
the local and remotkeaders It doesnt matter which processes are used as the
group leaders, howevdry convention, the group leaders in this paper will always

be the processes with rank 0. Therefore, for Figure 3, we can use processes A, B,
and C as the group leaders émmm1, comm2 andcomma3 The call for creating

an intercommunicator is as follows in C:

MPI_Intercomm_create(local_comm, local_leader, peer_comm,
remote_leader, tag, &newintercomm)

or, in FORTRAN

call MPI_Intercomm_create(local_comm, local_leader,
peer_comm, remote_leader, tag, newintercomm, ierr)

wherelocal_comm s the local communicatgdiocal_leader is the rank of
the local leader withitocal comm , peer_comm is the communicator to which
both leaders belong (e.ddPI_COMM_WOR]},[andremote _leader is the
rank of the remote leader withiemote_comm . Therefore, for Figure 3, to join
comm2andcomma3 local_leader for the processes eomm2would be 0
with local_comm equal tocomm2(this of course refers to process B). Remote
leader forcomm2would then be 2 andeer_comm would beMPI_COM-
M_WORLDFor the processes ocomm3 local_leader would be 0 with
local_comm set tocomm3(this refers to process C), and remote leader would be
1 withpeer_comm set toMPI_COMM_WORI(i2ferring to process B).The actual
FORTRAN code for creating this intercommunicator betweemm2andcomm3

of Figure 3 is as follows.

For processes in comm2:

call MPI_Intercomm_create(comm2, 0, MPI_COMM_WORLD,
$ 2, tag, intercomm, ierr)

and for processes in comma3:

call MPI_Intercomm_create(comm3, 0, MPI_COMM_WORLD,
$ 1, tag, intercomm, ierr)

The remaining parametdag , is an integer tag used to ensure that instances of
MPI_Intercomm_create don't confict, andnewintercomm is the new
intercommunicator to be creatddPl_Intercomm_create is a collective
operation, so all processes in both of the communicator groups must call this oper-
ation at once.

3.0 Implementing Multidisciplinary Applications using MPI

Now, consider how one might map a multidisciplinary application on to MPI. As
an example, consider the application described in Figure 4. Here the program con-

4)

Fluids Code
Structures Code

\ Multidisciplinary Application /

Figure 4: Block diagram of a simple multidisciplinary application.

10

sists of two distinct SPMD applications, one that simuldted dynamics (e.qg.,

the airfow over an airplane wing), and another that simulates structuresléxg., f
in an airplane wing). In this example multidisciplinary application, both of these
aspects are simulated to provide a more complete simulation. |daadywvould
want to simulate all aspects of an aircraft by integratindd, structures, thermal
effects, etc. in to a complete multidisciplinary simulation.

3.1 Intra-discipline/zone Communication

As previously stated, one of the most common and successful methods for imple-
menting multidisciplinary and multi-zonal applications is to take existing applica-
tion codes based on a single discipline, and add communication of boundary
information between these application codes to create i@dinifultidisciplinary
application. Each of these single discipline codes is a SPMD message passing code
with internal point to point and collective communication, 1/0, and computation.
The advantage of this technique is that one can use fully tested existing codes and
therefore the development of the multidisciplinary application becomes primarily
an integration problem. The problem, howeverthat to use this technique, the
underlying message passing system must allow applications to both operate as
multiple independent SPMD programs, as well as allow communication between
these independent tasks.

Consider how thisits in to the framework of MPI. As with any application, the

4)

FS,_ INTERZOMM
STRUCTURES_COMM

Structures Code

FLUIDS _COMM
Fluids Code

MPI_COMM_WORLD
\ Multidisciplinary Application /

Figure5: Block diagram of communicator assignments for a simple
multidisciplinary application.

appropriate executable is loaded as the proper number of processes. Each process
will have its own rank within the entire application, i.e.MPI_COMM_WORLD

(see Figure 5). Using this communicator it is possible for any processes to commu-
nicate. Howeverthe problem with this view is that it makes the coding of the sub--
programs much more ditult. For example, withiMPI_COMM_WORLihe

fluids code processes may be numbered from 0 to 15, but this would mean that the

11

first structures code process would be 16. This would require significant re-writing
of the code since all process numbers for the structures code woulddte lof
addition, it would not be possible to perform collective communication within
either of the constituent codes without involving the other codes (since MPI col-
lective communication involves all processes in the provided communicator).
Therefore, one would generally want to spPlI_COMM_WORIibto two pieces,

one for each executable code. Again consider Figure 5, one can simply break
MPI_COMM_WORIiibto two communicators, i.ésLUIDS_COMMNdSTRUC-
TURES_COMNMVithin each of these smaller communicators, all processes are
numbered from O to N-1 (where N is the number of processes running the code),
processes can now perform collective communication operations within their code
group, and point to point operations within each communicator can not interfere
with any processes outside of the scope of the communicator

3.2 Inter-discipline/zone Communication

Now that communicators have been defined for communication within each of the
codes, there still needs to be a mechanism for communicating between the codes.
There are two ways that this can be done using MPI. One would be MPuse
COMM_WORLANd to refer to each process by its rank in this communicator for
inter-group communication. The problem is that this reduces modularity and
increases complexity since it becomes necessary to have every process keep track
of how processes are allocated and the size of every group. For example, to deter-
mine the rank of the first structures code it would be necessary to know how many
processes are allocated for fluidviRl_COMM_WORL&N it would also be nec-
essary to know how processes are allocated (e.g., are they allocated in blocks,
cyclically, subcubes, etc.). A better approach is toinsEcommunicatorsas

shown in Figure 5. Intercommunicators allow direct communication between pro-
cesses belonging to disjoint groups and allow processes in one group to send mes-
sages to another using the ranks defined in the remote group. This means that only
a single rank has to be used for each process, whether communication is within a
communicator or to another communicateferring to Figure 5, it is possible to

have fuids process 5 send a message to structures process F8siNTER-
COMMTo create this communicator one can Mgl Intercomm_create

(see Section 2.3)however this still requires the programmer to know some infor-
mation about how processes have been allocated (i.e., who are the group leaders).
Unfortunately using MPI alone, this information is likely to be system dependent,
and thus will not be portable,

4.0 MPIRUN

The problem that has not been addressed in the previous sections is how to estab-
lish the application structure as shown in Figure 5. In other words, an MPI pro-
gram must be able to:

» load and run the correct executables,

12

 establish communicators for each executable (e.g., foluildls find structures
application codes), and

» create the fluid-structures intercommunicator

Loading is external to the scope of MPI, therefore, some machineicpeetha-

nism must be used for loading the executables. Next, to establish the group com-
municators each process can simply feed an integer representing its executable
group in to the “color”ield of MPI_Comm_split . This can be provided in one

of two ways, either the color can be hard-coded into each executable, or the color
values can be distributed at run-time. The first approach is unacceptable because it
requires re-compilation any time the number of zones or disciplines is changed,
and it means that one must have separate executables for each zone in a multi--
zonal application (i.e., where the same code is appliedferetit data sets each
representing a zone). A better solution is to have this information distributed after
the program is loaded. The final step is to set up intercommunicators. For this it is
necessary to establish “well known” group leaders so that intercommunicators can
be established witMPI_Intercomm_create . This can also be coded stati-
cally, but is also better done at run time to enhance flexibility and code re-use.

While it is possible to establish the correct environment on any machine, it is not
possible to do so portably using MPI alone. Loading is completely non-portable.
On a Paragon, loading is done with_load , on an iPSC/860 loading is done
with load , on workstations loading is dependant on the underlying parallel envi-
ronment being used (e.g., danne P4 [BuL92], PVM [GeB93], UNIX, IBM

POE [Ibm94]), etc. Furthesince loading can be thbfent, the means for distribut-

ing process allocation information at run time will also be non-portablsirni-

plify the process and to provide a portable means for specifying MPI applications,
the MPIRUN loader was developed at NASA Ames. MPIRUN can be built on top
of any implementation of MPI, and provides mechanisms for loading, establishes
communicators for each executable, and distributes information about group lead-
ers. Because MPIRUN contains all of the machine gpesperations, programs
using MPIRUN for loading and MPI for communication will be portable to any
platform to which MPIRUN has been ported (currently MPIRUN runs on the Intel
iIPSC/860 and Paragon, workstations running MPI on top of P4, the IBM SP series,
and the Thinking Machines CM-5).

MPIRUN can be used to start any MPI application, regardless of whether the pro-
gram uses any of MPIRUBI'special features. Howeyéo use MPIRUNS ability

to establish a multidisciplinary/multi-zonal application environment, MPIRUN
application codes must link in the MPIRUN library as well as the native MPI
library. They must also include thigef“mpirun.h " (for C) or “mpirunf.h ”

(for FORTRAN). Finally, an MPIRUN application code must call the routine
MPIRUN_Init immediately after callindiP1_Init , i.e, before any MPIRUN
functions are called. Note thstPIRUN _Init uses MPI functions and therefore it

will not work unlesdMPI_Init has been called first.

13

To run an MPIRUN program, theripirun ” command is usednpirun allows

the user to specify what executables are to be loaded as well as how many pro-
cesses should run each executable. Each of these sets of processes running a given
executable is known as &MPIRUN SPMD applicationrmpirun also allows the

user to pass guments to the underlying system as well as to the user program.
Processes are allocatedopirun , assigned to MPI groups (encompassing each

of the MPIRUN SPMD applications specified on thgirun command line), and

a communicator is formed for each group. In addition to starting processes and
forming initial groups for each MPIRUN SPMD application, MPIRUN also cre-

ates several variables that enable a user to easily establish intercommunicators.

Again consider thddid-structures example, here shown in Figure 6, the applica-

4)

MPIRUN APP _COMM
- - MPIRUN_APP_COMM
Fluids Code

(App 0) FSANTERCOMM Structures Code
(App 1)

MPI_COMM_WORLD
Multidisciplinary Application

. J

Figure 6: Block diagram of communicator assignments for a simple
multidisciplinary application using MPIRUN.

tion consists of two MPI groups representing each MPIRUN SPMD application,
each existing withiMPl_COMM_WORLD aid in establishing this structure, the
following pre-deined variables are provided by MPIRUNIPIRUN_APP_-
COMM, MPIRUN_NUM_APPS, MPIRUN_APP_ID, and MPIRUN_AP-
P_LEADERS

MPIRUN_APP_COMM

This is a communicator available to each process representing the set of processes
to that belong to the same MPIRUN SPMD application as the calling process. This
means that this communicator will befdient for each MPIRUN SPMD applica-

tion specifed on thempirun command line, howevethe name is uniform
throughout an MPIRUN program. This communicator should be used as the basis
for communication inside of each SPMD application. For example, referring to
Figure 6, a process running the fluids code can communicate to another fluids pro-
cess usindPIRUN_APP_COMNMNh addition, a structures process can communi-
cate to a structures process usMigIRUN_APP_COMMowever for a tuids
process to communicate with a structures process an intercommunicator will have
to be formed.

14

MPIRUN_NUM_APPS

This is simply the number of MPIRUN SPMD applications startechpyun .
Therefore for Figure 8YIPIRUN_NUM_APP®&ould be equal to 2.

MPIRUN_APP_ID

This is the “SPMD application ID” for the SPMD applications startechpyrun .

Each MPIRUN SPMD application will have a unique ID ranging from 0 to
MPIRUN_NUM_APRS. The variablMPIRUN_APP_IDis defined in every pro-
cess as the application ID for the MPIRUN SPMD application to which the pro-
cess belongs. Application IDs are allocated by MPIRUN following a deterministic
allocation strategyrhempirun command line is parsed from left to right, and as

it is parsed, groups are allocated starting with application ID 0. Using this alloca-
tion strategy it should be possible to decide the application ID for a given
MPIRUN group prior to run-time, so that programs can use application IDs to
determine what applications belong to what groups. Thus, referring to Figure 6, the
application may have been started with the following command:

mpirun -np 64 f luids_code : -np 32 structures_code

Thus, the fluids code would haMPIRUN_APP_IDequal to 0 and would be run-
ning on 64 processes, and the structures code wouldMBilfUN_APP_ID
equal to 1 and would run on 32 processes.

MPIRUN_APP_LEADERS

MPIRUN_APP_LEADERS an array intended to facilitate the creation of inter-
communicators. Recall that tidPI_Intercomm_create command requires
the calling process to know the rank of at least one member of the remote group
relative to some common communicat8imply put, this rank is exactly what
MPIRUN_APP_LEADERSrovides. More speddally, MPIRUN_APP_LEAD-
ERSJID] is defned as the rank relative dPI_COMM_WORIdD the process
within MPIRUN SPMD application numbéb with rank 0. For the example in
Figure 6 we could form the intercommunica®@ INTERCOMMYy having every
user process execute the following sequence in C:
if (MPIRUN_APP_COMM == 0)

ret=MPI_Intercomm_create(MPIRUN_APP_COMM, 0, MPI_COMM_WORLD,
e MPIRUN_APP_LEADERSI1], 0, &S_INTERCOMM);

ret=MPI_Intercomm_create(MPIRUN_APP_COMM, 0, MPI_COMM_WORLD,
MPIRUN_APP_LEADERSI0], 0, &FS INTERCOMM)

or, in FORTRAN:

if (MPIRUN_APP_COMM .eg. 0)
call MPI_Intercomm_create(MPIRUN_APP_COMM, 0,

$ MPI_COMM_WORLD,MPIRUN_APP LEADERS(l) 0,
$ FS_INTERCOMM, |err)
else

call MPI_Intercomm_create(MPIRUN_APP_COMM, 0,
$ MPI_COMM_WORLD, MPIRUN_APP LEADERS(O) 0,
$ FS_INTERCOMM, |err)

15

endif

For more details on both tmepirun command and on the special features pro-
vided to MPIRUN applications, see thgpirun man page. @ find out how to
obtain the MPIRUN package send e-mail ineberg@nas.nasa.gov

5.0 Performance

In this section MPI1 will be briefly compared with the native message passing layer
on three systems, the IBM SP-1, the IBM SP-2, and the Intel Paragon. The best
version of MPI currently available for the Paragon is thgoAne/MS State imple-
mentatior! (MPICH), howeverfor the SP-1 and SP-2 there is an IBM developed
version of MPI available (MPI-F) [Fra94] as well as MPICH. Referringetold 1,

TABLE 1. Message Passing Library Performance
Machine Message Latency | Bandwidth
Layer (usec) (MB/sec)
Paragon NX 149 432
Paragon MPICH 201 28.0
SP-1 MPL/p 36 8.8
SP-1 MPI-F 37 8.8
SP-2 MPL 43 35.6
SP-2 MPICH 52 355
SP-2 MPI-F 41 35.6

the latency and bandwidth of the MPI libraries were compared to the fastest pro-
prietary vendor librariet? These libraries are MPL/p for the SP-1, which is a fast
version of MPL developed by IBM research spealfy for the SP-1 (also known

as EUIH). For the SP-2, MPL is the normal SP-2 message passing, libeaeyis

no IBM research version of MPL for the SP-2. For the Paragon, the only vendor
supplied library is NX.

As can be see fromable 1, there is a sigigant, but not prohibitive, penalty for
using a non-vendor supplied MPI implementation (i.e., MPICH) for point-to-point
communication. This &éct appears as higher latency and in some cases lower
bandwidth. For most systems, only the latencyfiscééd, howevelin the case of

the Paragon, memory copying is quite slow and this limits the performance of
MPICH since it adds an extra tefing stept On the SP-2, memory copies are
fast, so MPICH has higher latency but virtually identical bandwidth (see Figures 7
and 8). For the vendor supplied version of MPI (MPI-F), the penalty is essentially
non-existent on the SP-1, and the MPI-F performance is measurably better than
MPL on the SP-2. While this advantage of MPI-F over MPL is probably due to

9. This MPI implementation is available via anonymous FliRfaimcs.anl.gov

10. These experiments were run in August and September 1994. The SP-2 used has 64 “wide” processing
nodes with 128 MB of RAM per node. The Paragon had 208 compute nodes, 32MB per node, and the commu-
nication coprocessors were not enabled. The SP-1 had 128 nodes, 64MB/node.

11. This efect would probably have been less had the communication coprocessor been enabled, however
this was not available on the NAS Paragon at the time the experiments were performed.

16

120.0

— Natjve (MPLC)
— IBM Research MPI (MPI-F
— Argonne/MS State MPI (M

100.0r

80.0r

Time (microseconds)

60.01

40802000 4000 6000 800.0 1000.0

Message Size (bytes)
Figure 7: Comparison of SP-2 Message Latency

V e T
= 30.0f
(]
0
o
=3

— Native (MPL g
g 200 — NRIvsMPRL mpi (MPEEY
E — Argonne/MS State MPI (MPICH)
2
©
@ 100}
8:8e+00 5.0e+05 1.0e+06

Message Size (Bytes)
Figure 8: Comparison of SP-2 Message Bandwidth

optimizations used by IBM research that were not possible in the “production”
message passing libraryprovides evidence that there are no “flaws” in MPI pre-
venting it from performing well.

For collective communication, even with the added complexity of communicators,
MPI-F also performs better than MPL on the SP-2. In Figures 9 and 10, two repre-
sentative forms of collective communication are shown for the SP-2, barrier syn-
chronization and broadcast of a 1K message. As can be seen, MPI-F gets
consistently better collective communication performance over MPL and MPICH.
This is due to two factors, the lower latency of MP&Rd the use of better algo-
rithms than MPL. The algorithmic improvement is most evident for Barrier Syn-
chronization. MPICH is signidantly worse than MPL, however the performance
loss is less than a factor of two. This is relatively good given the approximately
20% higher latency provided by MPICH.

17

N MPL
0—8|B e ar h MP

600.0r 9 —Ar onne MS State

ol 'If/?PICH)

400.01

200.0r

Barrier Sync Time (microseconds)

0-870 10.0 20.0 300

Number of Processors
Figure 9: Comparison of SP-2 Synchronization Performance

(@]
2 300.0 : : -
S
£
(]
£
= 200.0f
(%]
(1]
(&)
©
®©
o
om r—f5
L g G—ONatlve MPL
g 100.0r / / ol ReAPL vp1 (M 1PIE)
s o—0Argonne/MS State MPI (MPICH)
o
=
Y
— L L L
0-80 10.0 20.0 30.0

Number of Processors
Figure 10: Comparison of SP-2 Broadcast Performance
6.0 Summary

In this paper it has been shown that it is possible to create multidisciplinary appli-
cations using MPI for communication and that MPI is capable of providing perfor-
mance commensurate with proprietary message passing libraries. Farther
portable loader interface has been created to simplify program initiation enable
these MPI codes to be portable. Thus, using MPI and MPIRUN it is now possible
to create portable multidisciplinary and multi-zonal applications. Further
MPIRUN interface was designed to be generic enough so that it can be imple-
mented on any MIMD architecture, as evidenced by the variety of machines it cur-
rently runs on.

18

7.0 References

12

[BaW93] E. Barszcz, S. @kratunga, and E. PramomoModel for Executing

[Bar91]

[BUL92]

[Fin93c]

[Fra94]

[GeB93]

[GeS91]

[Ibm94]

[Mes94]

Multidisciplinary and Multizonal Pograms Report Number
RNR-93-009, NASA Ames Research Cenf&93.

E. Barszcz)ntercube Communication for the iPSC/8&0eport Num-
ber RNR-91-030, NASA Ames Research Certé81.

R. Butler and E. LusKJsers Guide to the P4 lBgramming System
Tech. Report RM-ANL-92/17, Ayonne National Laborator$992.

S. Finebeg, Implementing the NHT Application I/O Benchmark
Report RND-93-007, NASA Ames Research Cerit883.

H. Franke MPI-F: An MPI Implementation for IBM SP-1/SP-ZrV
sion 1.30Q Technical Report, IBM TJ. Watson Research Centéf94.

A. Geist, A. Beguelin, J. Dongarra,.\iang, R. Manchek, and V
SundaramPVM 3 Usels Guide and Refence ManuglReport ORN-
L/TM-12187, Engineering, Physics, and Mathematics Division, Mathe-
matical Sciences Section, Oak Ridge National Laboral®§3.

G. Geist and VSunderamNetwork Based Concuent Computing on
the PVM SystenTech. Report TM-1760, Oak Ridge National Labora-
tory, 1991.

IBM, IBM AIX Parallel Envionment Operation and Use Release 2.0
International Business Machines Corp., 1994.

Message Passing Interface ForuMiIl: A Message-Passing Interface
Standad, Computer Science Deptedhnical Report CS-94-230, Uni-
versity of Tennessee, 1994.

12. NAS technical reports are available by sending e-mdddecenter@nas.nasa.gov or via WWW
at URL: “http://www.na.nasa.gov

19

NAS TECHNICAL REPORT

Title:
Implementing Multidisciplinary and
Multi-zonal Applications Using MPI

Author(s):
Samuel A. Fineberg

Two reviewers

Reviewers:

“I have carefully and thoroughly reviewed
this technical report. I have worked with the
author(s) to ensure clarity of presentation and
technical accuracy. I take personal responsi-
bility for the quality of this document.”

must sign. Signe d:
Name:
Signed:
Name:
After approval, < .
assign NAS Branch Chief:
Report number.
Approved:
Date: NAS ReportNumber:

20

